• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Dimensional crossover in a quantum gas of light
 
  • Details
  • Full
Options
September 6, 2024
Journal Article
Title

Dimensional crossover in a quantum gas of light

Abstract
The dimensionality of a system profoundly influences its physical behaviour, leading to the emergence of different states of matter in many-body quantum systems. In lower dimensions, fluctuations increase and lead to the suppression of long-range order. For example, in bosonic gases, Bose-Einstein condensation in one dimension requires stronger confinement than in two dimensions. Here we observe the dimensional crossover from one to two dimensions in a harmonically trapped photon gas and study its properties. The photons are trapped in a dye microcavity where polymer nanostructures provide the trapping potential for the photon gas. By varying the aspect ratio of the harmonic trap, we tune from isotropic two-dimensional confinement to an anisotropic, highly elongated one-dimensional trapping potential. Along this transition, we determine the caloric properties of the photon gas and find a softening of the second-order Bose–Einstein condensation phase transition observed in two dimensions to a crossover behaviour in one dimension.
Author(s)
Kirankumar, Karkihalli Umesh
Rheinische Friedrich-Wilhelms-Universität Bonn
Schulz, Julian
Schmitt, Julian  
California Institute of Technology, Harvard College
Weitz, Martin  
University of Bonn
Freymann, Georg von  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Vewinger, Frank  
Rheinische Friedrich-Wilhelms-Universitat Bonn, Institut für Angewandte Physik
Journal
Nature physics  
DOI
10.1038/s41567-024-02641-7
Language
English
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Keyword(s)
  • dimensionality of a system

  • many-body quantum systems

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024