• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Exploratory Data Analysis of Time Series Using Pre-segmented Clustering
 
  • Details
  • Full
Options
2025
Conference Paper
Title

Exploratory Data Analysis of Time Series Using Pre-segmented Clustering

Abstract
Time series clustering is an unsupervised method of organizing homogeneous time series in groups based on certain similarity criteria. As a result, it can be an essential step in Exploratory Data Analysis (EDA), especially for complex time series data. This applies specifically to industrial datasets for applications like predictive maintenance, energy consumption, etc., due to the heterogeneity and peculiarity of collected data sets. Understanding the underlying trends and patterns in such datasets could help strategize advanced analysis methods such as forecasting, regression testing, etc. In this paper, we present a case study on a real-world energy consumption dataset of 4G cells, where we perform a pre-segmented clustering based EDA to uncover hidden insights about the data. The empirical study demonstrates that performing pre-segmented clustering based EDA enhances data interpretation by revealing prevalent and infrequent patterns, empowering users to refine analyses such as prediction more precisely, leading to performance improvement.
Author(s)
Jain, Vineeta  orcid-logo
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Huang, Zihao
TU Dresden
Richter, Anna
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Wetzker, Ulf  
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Frotzscher, Andreas
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Mainwork
Information Integration and Web Intelligence. 26th International Conference, iiWAS 2024. Proceedings. Part I  
Project(s)
Cognitive and Automated Network Operations for Present and Beyond; Teilvorhaben: Anforderungsanalyse, Datenanalyse und Simulation für die KI-basierte Zustandsanalyse und -Vorhersage in 5G-Netzwerken  
Funder
Bundesministerium für Wirtschaft und Klimaschutz  
Conference
International Conference on Information Integration and Web Intelligence 2024  
DOI
10.1007/978-3-031-78090-5_21
Language
English
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Keyword(s)
  • Exploratory Data Analysis

  • Times series

  • Clustering

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024