• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Towards Deep Active Learning in Avian Bioacoustics
 
  • Details
  • Full
Options
September 2024
Conference Paper
Title

Towards Deep Active Learning in Avian Bioacoustics

Abstract
Passive acoustic monitoring (PAM) in avian bioacoustics enables cost-effective and extensive data collection with minimal disruption to natural habitats. Despite advancements in computational avian bioacoustics, deep learning models continue to encounter challenges in adapting to diverse environments in practical PAM scenarios.
This is primarily due to the scarcity of annotations, which requires labor-intensive efforts from human experts. Active learning (AL) reduces annotation cost and speed ups adaption to diverse scenarios by querying the most informative instances for labeling. This paper outlines a deep AL approach, introduces key challenges, and conducts a small-scale pilot study.
Author(s)
Rauch, Lukas
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Huseljic, Denis
Wirth, Moritz
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Decke, Jens
Sick, Bernhard
Scholz, Christoph
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Mainwork
Workshop on Interactive Adaptive Learning 2024. Proceedings  
Project(s)
Automatic Bird Detection of Endangered Species Using Deep Neural Networks  
Funder
Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz  
Conference
Workshop on Interactive Adaptive Learning 2024  
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases 2024  
Link
Link
Language
English
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Keyword(s)
  • Deep Learning

  • Bioacoustic

  • Active Learning

  • Wind Planning

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024