• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Efficient Convolutional Forward Modeling and Sparse Coding in Multichannel Imaging
 
  • Details
  • Full
Options
2024
Conference Paper
Title

Efficient Convolutional Forward Modeling and Sparse Coding in Multichannel Imaging

Abstract
This study considers the Block-Toeplitz structural properties inherent in traditional multichannel forward model matrices, using Full Matrix Capture (FMC) in ultrasonic testing as a case study. We propose an analytical convolutional forward model that transforms reflectivity maps into FMC data. Our findings demonstrate that the convolutional model excels over its matrix-based counterpart in terms of computational efficiency and storage requirements. This accelerated forward modeling approach holds significant potential for various inverse problems, notably enhancing Sparse Signal Recovery (SSR) within the context LASSO regression, which facilitates efficient Convolutional Sparse Coding (CSC) algorithms. Additionally, we explore the integration of Convolutional Neural Networks (CNNs) for the forward model, employing deep unfolding to implement the Learned Block Convolutional ISTA (BC-LISTA).
Author(s)
Wang, Han
Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP  
Kvich, Yhonatan
Weizmann Institute of Science, Faculty of Math and Computer Science
Perez Mejia, Eduardo Jose
Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP  
Römer, Florian  
Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP  
Eldar, Yonina
Mainwork
32nd European Signal Processing Conference, EUSIPCO 2024. Proceedings  
Conference
European Signal Processing Conference 2024  
DOI
10.23919/EUSIPCO63174.2024.10715463
Language
English
Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP  
Keyword(s)
  • Convolutional Sparse Coding

  • Deep Unfolding

  • Forward Modeling

  • Multichannel Imaging

  • Toeplitz Matrix

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024