• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Investigating Multilingual Instruction-Tuning: Do Polyglot Models Demand for Multilingual Instructions?
 
  • Details
  • Full
Options
November 2024
Conference Paper
Title

Investigating Multilingual Instruction-Tuning: Do Polyglot Models Demand for Multilingual Instructions?

Abstract
The adaption of multilingual pre-trained LLMs into eloquent and helpful assistants is essential to facilitate their use across different language regions. In that spirit, we are the first to conduct an extensive study of the performance of multilingual models instruction-tuned on different language compositions on parallel instruction-tuning benchmarks across a selection of the most spoken Indo-European languages. We systematically examine the effects of language and instruction dataset size on a mid-sized and a large, multilingual LLMs by instruction-tuning them on parallel instruction-tuning datasets. Our results demonstrate that instruction-tuning on parallel instead of monolingual corpora benefits cross-lingual instruction following capabilities by up to 9.9%. Furthermore, we show that the Superficial Alignment Hypothesis does not hold in general, as the investigated multilingual 7B parameter model presents a counter-example requiring large-scale instruction-tuning datasets. Finally, we conduct a human annotation study to understand the alignment between human-based and GPT-4-based evaluation within multilingual chat scenarios.
Author(s)
Weber, Alexander Arno
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Ebert, Jan  
Forschungszentrum Jülich GmbH
Thellmann, Klaudia
TU Dresden  
Flores-Herr, Nicolas  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Lehmann, Jens
Fromm, Michael  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Ali, Mehdi  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Mainwork
EMNLP 2024, Conference on Empirical Methods in Natural Language Processing. Proceedings  
Project(s)
The Lamarr Institute for Machine Learning and Artificial Intelligence  
Funder
Bundesministerium für Bildung und Forschung -BMBF-  
Conference
Conference on Empirical Methods in Natural Language Processing 2024  
Link
Link
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Keyword(s)
  • LLM

  • Language Model

  • multilingual models

  • instruction-tuning

  • dataset size

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024