• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Abschlussarbeit
  4. Self-learning Anomaly Detection in Industrial Production
 
  • Details
  • Full
Options
2023
Doctoral Thesis
Title

Self-learning Anomaly Detection in Industrial Production

Abstract
Configuring an anomaly-based Network Intrusion Detection System for cybersecurity of an industrial system in the absence of information on networking infrastructure and programmed deterministic industrial process is challenging. Within the research work, different self-learning frameworks to analyze passively captured network traces from PROFINET-based industrial system for protocol-based and process behavior-based anomaly detection are developed, and evaluated on a real-world industrial system.
Thesis Note
Zugl.: Karlsruhe, KIT Karlsruher Institut für Technologie, Diss., 2022
Author(s)
Meshram, Ankush  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Advisor(s)
Beyerer, Jürgen  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Publisher
KIT Scientific Publishing  
Open Access
File(s)
Download (14.28 MB)
Rights
CC BY-SA 4.0: Creative Commons Attribution-ShareAlike
DOI
10.5445/KSP/1000152715
10.24406/h-478330
Language
English
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Keyword(s)
  • Industrielles Steuerungssystem

  • Netzwerksicherheit

  • Netzwerk-Intrusion-Detection-System

  • Anomalieerkennung

  • selbstlernend

  • Industrial Control System

  • Network Security

  • Network Intrusion Detection System

  • Anomaly Detection

  • self-learning

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024