• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Enhancing Wind Turbine Location Accuracy: A Deep Learning-Based Object Regression Approach for Validating Wind Turbine Geo-Coordinates
 
  • Details
  • Full
Options
2024
Conference Paper
Title

Enhancing Wind Turbine Location Accuracy: A Deep Learning-Based Object Regression Approach for Validating Wind Turbine Geo-Coordinates

Abstract
Remote sensing and deep learning-based methods can be combined to obtain location information automatically on a large scale. This paper introduces an approach for enhancing the geo-coordinate accuracy of existing wind turbines. By employing a RetinaNet-based method for regressive object localization, turbines can be precisely located in images in addition to being identified. Utilizing semi-automatically processed and manually filtered high-resolution image data, a model is trained with an average precision of 96 %. Subsequently, the model is applied to Germany’s MaStR wind turbine dataset. The application illustrates the advantageous implementation of the method and emphasizes its considerable potential for improving the accuracy of geo-coordinates. While 73.72 % of existing coordinates can be confirmed as correct with a deviation of less than 10 meter, for more than 15 % of the turbine locations coordinates between 10 and 100 meters can be corrected, and for 5.6 % locations a deviation of more than 100 meter can be determined. This showcases the real-world application of the proposed methodology and underscores its significant potential for enhancing the quality of geo-coordinates.
Author(s)
Kleebauer, Maximilian  
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Braun, Axel  
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Horst, Daniel  
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Pape, Carsten  
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Mainwork
IGARSS 2024, IEEE International Geoscience and Remote Sensing Symposium. Proceedings  
Project(s)
cdw Barometer der Energiewende
Funder
Conference
International Geoscience and Remote Sensing Symposium 2024  
DOI
10.1109/IGARSS53475.2024.10641018
Language
English
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Keyword(s)
  • remote sensing

  • wind turbines

  • renewable energy systems

  • object detection

  • object regression

  • geo-coordinate validation

  • retinanet

  • Marktstammdatenregister

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024