• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Probabilistic human-machine cooperation in product personalization
 
  • Details
  • Full
Options
2024
Conference Paper
Title

Probabilistic human-machine cooperation in product personalization

Abstract
When personalizing products, AI algorithms relieve customers of the burden of choice. However configuration recommendations by AI are probabilistic in nature. Users need to understand this to make well informed decisions.
We therefore propose a user interaction paradigm for recommender and configuration systems which is based on Single Pass Bayesian Reasoning and on Suitability Probability Tables. Personalizing shoes is used as a use case for demonstration.
This interaction paradigm can be maintained even with modified algorithms. Generalizability to other classes of algorithms remains to be proven as well as correctness of interpretation by users and user acceptance.
Author(s)
Dangelmaier, Manfred  
Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO  
Hölzle, Katharina
Univ. Stuttgart, Institut für Arbeitswissenschaft und Technologiemanagement -IAT-  
Krieg, Sabine  
Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB  
Briem, Ann-Kathrin  orcid-logo
Fraunhofer-Institut für Bauphysik IBP  
Groß, Erwin  
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Mainwork
11th International Conference on Customization and Personalization, MCP 2024. Proceedings  
Conference
International Conference on Customization and Personalization 2024  
Language
English
Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO  
Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB  
Fraunhofer-Institut für Bauphysik IBP  
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Keyword(s)
  • AI

  • Bayesian Resoning

  • Recommender Systems

  • Human-machine cooperation

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024