• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Anomaly Detection from Image Classification
 
  • Details
  • Full
Options
2024
Conference Paper
Title

Anomaly Detection from Image Classification

Abstract
This study aims to perform anomaly detection on human poses without using any pose estimator. Human pose anomaly detection has multiple practical applications across various industries and realms, contributing to improved safety, efficiency, and overall human-machine interaction. Here, we can also apply this in detecting anomaly poses of workers in a factory. To manifest this, we can come up with a system in which an image classifier is trained on a dataset of factory workers with various poses then deployed for pose anomaly detection. Contrary to previous works, it can be noted that the system can perform pose anomaly detection without any need for a separate pose estimator. Here, the definition of anomaly can vary by different datasets, so we use Stable Diffusion to generate a consistent dataset of normal and abnormal poses. Then, in order to achieve state-of-the-art performance, we use the EfficientNetV2 model for detecting anomalies within the generated dataset. Results show that the EfficientNetV2 model has excellent results on the dataset that is generated by Stable Diffusion.
Author(s)
Jeon, Hyung Joon
Fraunhofer-Institut für Fabrikbetrieb und -automatisierung IFF  
Lang, Sebastian  
Fraunhofer-Institut für Fabrikbetrieb und -automatisierung IFF  
Vogel, Christian  orcid-logo
Fraunhofer-Institut für Fabrikbetrieb und -automatisierung IFF  
Behrens, Roland  
Fraunhofer-Institut für Fabrikbetrieb und -automatisierung IFF  
Mainwork
9th International Conference on Control and Robotics Engineering, ICCRE 2024  
Conference
International Conference on Control and Robotics Engineering 2024  
DOI
10.1109/ICCRE61448.2024.10589753
Language
English
Fraunhofer-Institut für Fabrikbetrieb und -automatisierung IFF  
Keyword(s)
  • anomaly detection

  • deep learning

  • EfficientNetV2

  • pose classification

  • Stable Diffusion

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024