• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Real-Time Automatic Drum Transcription Using Dynamic Few-Shot Learning
 
  • Details
  • Full
Options
September 30, 2024
Conference Paper
Title

Real-Time Automatic Drum Transcription Using Dynamic Few-Shot Learning

Abstract
This paper proposes the application of dynamic few-shot learning for automatic drum transcription (ADT). The contributions of this work are threefold. First, we adapt dynamic few-shot learning to improve the classification of superimposed events. Secondly, we introduce a novel method for generating training data for ADT. Thirdly, we demonstrate how our model can be applied in real-time without strongly deteriorating the classification performance. We evaluate transcription performance in the presence of melodic instruments for 10 drum classes on three publicly available test datasets and achieve state-of-theart performance. We show that new drum classes can be learned and performance for known classes can be improved by providing some examples of that respective class during test time.
Author(s)
Weber, Philipp
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Uhle, Christian  
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Müller, Meinard  
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Lang, Matthias  
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Mainwork
IEEE 5th International Symposium on the Internet of Sounds 2024  
Conference
International Symposium on the Internet of Sounds 2024  
File(s)
Download (444.48 KB)
Rights
Use according to copyright law
DOI
10.1109/IS262782.2024.10704130
10.24406/h-477872
Language
English
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Keyword(s)
  • music information retrieval

  • automatic drum transcription

  • few-shot learning

  • real-time processing

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024