• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Convolutional Physics- Informed Neural Networks for Fast Prediction of Core Losses in Axisymmetric Transformers
 
  • Details
  • Full
Options
2024
Conference Paper
Title

Convolutional Physics- Informed Neural Networks for Fast Prediction of Core Losses in Axisymmetric Transformers

Abstract
We adapt a convolutional approach on Physics-Informed Neural Networks (PINNs) for solving the magnetostatic Maxwell's Equation on parametric axisymmetric transformer geometries. The trained PINN is capable of solving the physical equations in a matter of milliseconds for arbitrary geometries constrained by a total of 18 degrees of freedom (DoF). The results are analysed with respect to a numerical reference solution based on derived inductances and squared magnetic flux densities as an indication for resulting core losses. The combination of inference speed and accuracy enables new orders of magnitude for the optimization of transformer designs going forward.
Author(s)
Brendel, Philipp  orcid-logo
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
Medvedev, Vladimir
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
Roßkopf, Andreas  
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
Mainwork
IEEE 21st Biennial Conference on Electromagnetic Field Computation, CEFC 2024  
Conference
Biennial Conference on Electromagnetic Field Computation 2024  
DOI
10.1109/CEFC61729.2024.10585678
Language
English
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
Keyword(s)
  • core losses

  • magnetostatics

  • physics-informed neural networks

  • transformers

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024