• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Determining materials for energy conversion across scales
 
  • Details
  • Full
Options
2024
Journal Article
Title

Determining materials for energy conversion across scales

Title Supplement
The alkaline oxygen evolution reaction
Abstract
Despite considerable efforts to develop electrolyzers for energy conversion, progress has been hindered during the implementation stage by different catalyst development requirements in academic and industrial research. Herein, a coherent workflow for the efficient transition of electrocatalysts from basic research to application readiness for the alkaline oxygen evolution reaction is proposed. To demonstrate this research approach, La0.8Sr0.2CoO3 is selected as a catalyst, and its electrocatalytic performance is compared with that of the benchmark material NiFe2O4. The La0.8Sr0.2CoO3 catalyst with the desired dispersity is successfully synthesized by scalable spray-flame synthesis. Subsequently, inks are formulated using different binders (Nafion®, Naf; Sustainion®, Sus), and nickel substrates are spray coated, ensuring a homogeneous catalyst distribution. Extensive electrochemical evaluations, including several scale-bridging techniques, highlight the efficiency of the La0.8Sr0.2CoO3 catalyst. Experiments using the scanning droplet cell (SDC) indicate good lateral homogeneity for La0.8Sr0.2CoO3 electrodes and NiFe2O4-Sus, while the NiFe2O4-Naf film suffers from delamination. Among the various half-cell techniques, SDC proves to be a valuable tool to quickly check whether a catalyst layer is suitable for full-cell-level testing and will be used for the fast-tracking of catalysts in the future. Complementary compression and flow cell experiments provide valuable information on the electrodes' behavior upon exposure to chemical and mechanical stress. Finally, parameters and conditions simulating industrial settings are applied using a zero-gap cell. Findings from various research fields across different scales obtained based on the developed coherent workflow contribute to a better understanding of the electrocatalytic system at the early stages of development and provide important insights for the evaluation of novel materials that are to be used in large-scale industrial applications.
Author(s)
Gerschel, Philipp
Ruhr-Universität Bochum  
Angel, Steven
Universität Duisburg-Essen  
Hammad, Mohaned
Universität Duisburg-Essen  
Olean-Oliveira, André
Universität Duisburg-Essen  
Toplak, Blaž
Universität Duisburg-Essen  
Chanda, Vimanshu
Universität Duisburg-Essen  
Martínez-Hincapié, Ricardo
Max-Planck-Institut für Chemische Energiekonversion
Sanden, Sebastian Adrian
Ruhr-Universität Bochum  
Khan, Ali Raza
Max-Planck-Institut für Chemische Energiekonversion
Xing, Da
Universität Duisburg-Essen  
Amin, Amin Said
Universität Duisburg-Essen  
Wiggers, Hartmut
Universität Duisburg-Essen  
Hoster, Harry
Universität Duisburg-Essen  
Čolić, Viktor
Universität Duisburg-Essen  
Andronescu, Corina
Universität Duisburg-Essen  
Schulz, Christof
Universität Duisburg-Essen  
Apfel, Ulf-Peter  
Ruhr-Universität Bochum  
Segets, Doris
Universität Duisburg-Essen  
Journal
Carbon energy  
Open Access
DOI
10.1002/cey2.608
Language
English
Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT  
Keyword(s)
  • alkaline water electrolysis

  • Oxygen evolution reaction

  • perovskite

  • Zero-gap half-cell

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024