• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Using edge AI: Continuous monitoring of critical infrastructure
 
  • Details
  • Full
Options
2024
Journal Article
Title

Using edge AI: Continuous monitoring of critical infrastructure

Abstract
Many of our critical infrastructures are old and heavily used, including bridges, roads, and utility systems. The traditional approach of inspecting and maintaining these infrastructures via fixed maintenance intervals is often outdated. Predictive maintenance, which is based on the evaluation of raw data, can increase maintenance efficiency, as continuous monitoring enables a faster response to changes in structures. There is a significant discrepancy between the current state of technological knowledge and the actual technological equipment of such structures. The project presented here aims to close this gap by using modern measurement technology, edge AI processing, and autonomous data evaluation. This should offer significant benefit to inspectors and operators by providing them with additional information and resources to save labor and costs while increasing safety. waste streams.
Author(s)
Klein, Samuel  
Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP  
Emge, Julia
Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP  
Koster, Dirk  
Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP  
Journal
inno  
Open Access
DOI
10.24406/h-475287
File(s)
24047.pdf (649.17 KB)
Rights
CC BY 4.0: Creative Commons Attribution
Language
English
Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP  
Keyword(s)
  • Künstliche Intelligenz

  • Überwachung

  • kritische Infrastruktur

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024