• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Collaborative Semantic Occupancy Prediction with Hybrid Feature Fusion in Connected Automated Vehicles
 
  • Details
  • Full
Options
2024
Conference Paper
Title

Collaborative Semantic Occupancy Prediction with Hybrid Feature Fusion in Connected Automated Vehicles

Abstract
Collaborative perception in automated vehicles leverages the exchange of information between agents, aiming to elevate perception results. Previous camera-based collaborative 3D perception methods typically employ 3D bounding boxes or bird’s eye views as representations of the environment. However, these approaches fall short in offering a comprehensive 3D environmental prediction. To bridge this gap, we introduce the first method for collaborative 3D semantic occupancy prediction. Particularly, it improves local 3D semantic occupancy predictions by hybrid fusion of (i) semantic and occupancy task features, and (ii) compressed orthogonal attention features shared between vehicles. Additionally, due to the lack of a collaborative perception dataset designed for semantic occupancy prediction, we augment a current collaborative perception dataset to include 3D collaborative semantic occupancy labels for a more robust evaluation. The experimental findings highlight that: (i) our collaborative semantic occupancy predictions excel above the results from single vehicles by over 30%, and (ii) models anchored on semantic occupancy outpace state-of-the-art collaborative 3D detection techniques in subsequent perception applications, showcasing enhanced accuracy and enriched semantic-awareness in road environments.
Author(s)
Song, Rui
Fraunhofer-Institut für Verkehrs- und Infrastruktursysteme IVI  
Liang, Chenwei
Fraunhofer-Institut für Verkehrs- und Infrastruktursysteme IVI  
Cao, Hu
Technische Universität München  
Yan, Zhiran
Technische Hochschule Ingolstadt
Zimmer, Walter
Technische Universität München  
Gross, Markus
Fraunhofer-Institut für Verkehrs- und Infrastruktursysteme IVI  
Festag, Andreas  
Fraunhofer-Institut für Verkehrs- und Infrastruktursysteme IVI  
Knoll, Alois
Technische Universität München  
Mainwork
IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024. Proceedings  
Project(s)
5G Innovation Concept Ingolstadt
Funder
Bundesministerium für Digitales und Verkehr  
Conference
Conference on Computer Vision and Pattern Recognition 2024  
Open Access
DOI
10.1109/CVPR52733.2024.01704
Language
English
Fraunhofer-Institut für Verkehrs- und Infrastruktursysteme IVI  
Keyword(s)
  • collaborative perception

  • automated driving

  • environmental prediction

  • data fusion

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024