• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Inductively heatable catalytic materials for the dehydrogenation of the liquid organic hydrogen carrier (LOHC) perhydro dibenzyltoluene
 
  • Details
  • Full
Options
July 19, 2024
Journal Article
Title

Inductively heatable catalytic materials for the dehydrogenation of the liquid organic hydrogen carrier (LOHC) perhydro dibenzyltoluene

Abstract
Liquid organic hydrogen carriers (LOHC) represent a promising technology for future hydrogen storage and transport applications. For operations that require a certain hydrogen release dynamic (e.g. with fast load changes) the endothermal dehydrogenation of hydrogen-loaded LOHC compounds can greatly benefit from heating technologies that allow a fast hydrogen release with minimal energy losses. This contribution demonstrates that direct induction heating of the catalyst material represents a very interesting technology in this context as the catalyst material is heated specifically, and thus preheating times and heat losses to the environment can be avoided. In detail, this work highlights the dehydrogenation of perhydro dibenzyltoluene (H18-DBT) using inductively heatable Pt-based catalyst materials prepared in three different ways: a) Pt-alumina on steel beads, b) Pt-alumina on a flat FeCrAl-plate, and c) α-alumina core with a γ-alumina shell that contains spray-dried iron oxide (IO) nanoparticle agglomerates and is impregnated with Pt.
Author(s)
Schörner, Markus
Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Erlangen, Germany
Solymosi, Thomas
Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Erlangen, Germany
Razcka, Theodor
Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
Nathrath, Phillip
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik (CRT), Erlangen, Germany
Johner, Nicolas Patrick
Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Erlangen, Germany
Zimmermann, Thomas
Fraunhofer-Institut für Silicatforschung ISC  
Mandel, Karl  
Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
Wasserscheid, Peter
Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Erlangen, Germany
Wintzheimer, Susanne  
Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
Schühle, Patrick
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik (CRT)T, Erlangen, Germany
Journal
Catalysis science & technology  
Open Access
DOI
10.1039/d4cy00272e
Language
English
Fraunhofer-Institut für Silicatforschung ISC  
Keyword(s)
  • Alumina

  • Aluminum oxide

  • Catalysts

  • Energy dissipation

  • Hydrogen storage

  • Induction heating

  • Iron oxides

  • Dehydrogenation

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024