• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Assessment of carbon reduction through AI methods in inspection after reverse logistics
 
  • Details
  • Full
Options
2023
Presentation
Title

Assessment of carbon reduction through AI methods in inspection after reverse logistics

Title Supplement
Conference Paper presented at 6th International Conference on Remanufacturing (ICoR) 2023, Amsterdam, 27-29 June 2023
Abstract
Although it is a goal to reduce the workforce and energy consumption required to digitize and learn Artificial Intelligence (AI) methods, it is vital to assess the balance of energy consumption versus the efficiency benefits through AI methods for reverse logistics sorting processes. Therefore, the aim of the paper is to describe how to find the return of investment in energy used for digitization and artificial intelligence. At first, energy consumption drivers introduced to the sorting process for digitization are assessed. In addition, the energy consumption of the training of AI methods and other sophisticated statistical models was monitored. Afterward, the authors discuss and select which metrics suit the comparison between energy costs of algorithms and show the influence of design decisions in artificial intelligence. An analysis shows that it is possible to achieve high recognition performance but keep energy consumption in mind.
Finally, it is shown that in an inspection use case, we can achieve a fast break-even of energy use consumption for digitization and AI used for improved processes is achievable. The demonstration compares the energy costs of more properly sorted remanufactured products compared to the opportunity costs of energy consumption for a new production of respective products.
Author(s)
Schlüter, Marian  
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK  
Caspers, Justus
Briese, Clemens  
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK  
Schimanek, Robert
Koch, Paul
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK  
Kröger, Ole
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK  
Bilge, Pinar
Krüger, Jörg  
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK  
Dietrich, Franz
Project(s)
EIBA - Sensorische Erfassung, automatisierte Identifikation und Bewertung von Altteilen anhand von Produktdaten sowie Informationen über bisherige Lieferungen
Funder
Bundesministerium für Bildung und Forschung -BMBF-  
Conference
International Conference on Remanufacturing 2023  
File(s)
ICoR_2023_Schlueter_et_al_Assessment_of_carbon_reduction.pdf (402.4 KB)
Rights
Under Copyright
DOI
10.24406/publica-3540
Language
English
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK  
Keyword(s)
  • energy consumption

  • artificial intelligence

  • digitization

  • energy costs

  • circular economy

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024