• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Modeling the Age-related Decrease in Ballistic Limit Velocity of Polycarbonate Vision Panels Using a Johnson-Cook Material Model Coupled with Variable Failure Criteria
 
  • Details
  • Full
Options
2023
Journal Article
Title

Modeling the Age-related Decrease in Ballistic Limit Velocity of Polycarbonate Vision Panels Using a Johnson-Cook Material Model Coupled with Variable Failure Criteria

Abstract
Machine tools are equipped with polycarbonate vision panels that allow the operator to observe the machining process and protect him from ejected fragments. Adequate protection is demonstrated by impact tests. However, polycarbonate is subject to aging processes, which diminish the protective performance of such panels. This paper presents an approach for modelling aging effects on the ballistic limit velocity of polycarbonate using Finite Element simulations. A Johnson-Cook material model in conjunction with variable failure criteria was used for the simulations. Aging effects on the ballistic limit velocity were included in the model by adjusting the failure criteria. Material parameters and failure criteria were derived from experimental impact and tensile tests on unaged and aged polycarbonate specimen. The numerical results predict the ballistic limit velocity with a maximum deviation of 0.98%. The model provides a more in-depth understanding of the aging effects on the safety performance of polycarbonate vision panels.
Author(s)
Uhlmann, Eckart  
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK  
Polte, Mitchel  
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK  
Bergström, Nils
Le, Vu Ninh
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK  
Journal
Journal of Machine Engineering  
Open Access
DOI
10.36897/jme/166600
Language
English
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024