• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Audio Transformer for Synthetic Speech Detection via Benford's Law Distribution Analysis
 
  • Details
  • Full
Options
2024
Conference Paper
Title

Audio Transformer for Synthetic Speech Detection via Benford's Law Distribution Analysis

Abstract
This paper introduces a novel approach that enhances synthetic speech detection by applying Benford’s law analysis to the encoder embeddings. By leveraging Benford’s Law as supplementary information alongside the existing embeddings, the model gains a detailed understanding of both content-related features and numerical distribution patterns. Our approach demonstrates superior performance on the ASVspoof 2019 LA dataset, achieving an AUC score of 0.921, while providing enhanced interpretability.
Author(s)
Talagini Ashoka, Anitha Bhat
Fraunhofer-Institut für Digitale Medientechnologie IDMT  
Cuccovillo, Luca  
Fraunhofer-Institut für Digitale Medientechnologie IDMT  
Aichroth, Patrick  
Fraunhofer-Institut für Digitale Medientechnologie IDMT  
Mainwork
Proceedings of the 3rd ACM International Workshop on Multimedia AI against Disinformation, MAD'24  
Conference
International Workshop on Multimedia AI against Disinformation 2024  
Open Access
DOI
10.1145/3643491.3660288
Additional full text version
Landing Page
Language
English
Fraunhofer-Institut für Digitale Medientechnologie IDMT  
Keyword(s)
  • media forensics

  • Benford’s law

  • audio deepfakes

  • audio transformer

  • synthetic speech detection

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024