• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Enhancing Argument Generation Using Bayesian Networks
 
  • Details
  • Full
Options
2024
Conference Paper
Title

Enhancing Argument Generation Using Bayesian Networks

Abstract
In this paper, we examine algorithms that utilize factor graphs from Bayesian Belief Networks to generate and evaluate arguments. We assess their strengths and weaknesses, which leads to the creation of our improved algorithm that rectifies the issues that we identified. Our approach includes applying the original and modified algorithms to previously known networks to pose challenges in generating robust arguments for humans and computers. Our findings reveal significant improvements in the creation of more robust arguments. Moreover, we delve into the dynamics of argument interaction, offering detailed insight into the algorithms’ practical efficacy.
Author(s)
Cao, Yuan
Fraunhofer-Institut für Kognitive Systeme IKS  
Fuchs, Rafael
Ludwig-Maximilians-Universität München
Keshmirian, Anita
Fraunhofer-Institut für Kognitive Systeme IKS  
Mainwork
Robust Argumentation Machines. First International Conference, RATIO 2024. Proceedings  
Project(s)
Der Bayes'sche Ansatz für robuste Argumentationsmaschinen  
IKS-Ausbauprojekt  
Funder
Deutsche Forschungsgemeinschaft (DFG)
Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie  
Conference
International Conference on Robust Argumentation Machines 2024  
Open Access
File(s)
Download (763.18 KB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.1007/978-3-031-63536-6_15
10.24406/publica-3505
Additional full text version
Landing Page
Language
English
Fraunhofer-Institut für Kognitive Systeme IKS  
Fraunhofer Group
Fraunhofer-Verbund IUK-Technologie  
Keyword(s)
  • argument strength

  • Bayesian Belief Network

  • argument generation

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024