• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Anderes
  4. Influence of Water Droplet Contamination for Transparency Segmentation
 
  • Details
  • Full
Options
2024
Paper (Preprint, Research Paper, Review Paper, White Paper, etc.)
Title

Influence of Water Droplet Contamination for Transparency Segmentation

Title Supplement
Published on arXiv
Abstract
Computer vision techniques are on the rise for industrial applications, like process supervision and autonomous agents, e.g., in the healthcare domain and dangerous environments. While the general usability of these techniques is high, there are still challenging real-world use-cases. Especially transparent structures, which can appear in the form of glass doors, protective casings or everyday objects like glasses, pose a challenge for computer vision methods. This paper evaluates the combination of transparent objects in conjunction with (naturally occurring) contamination through environmental effects like hazing. We introduce a novel publicly available dataset containing 489 images incorporating three grades of water droplet contamination on transparent structures and examine the resulting influence on transparency handling. Our findings show, that contaminated transparent objects are easier to segment and that we are able to distinguish between different severity levels of contamination with a current state-of-the art machine-learning model. This in turn opens up the possibility to enhance computer vision systems regarding resilience against, e.g., datashifts through contaminated protection casings or implement an automated cleaning alert.
Author(s)
Knauthe, Volker
TU Darmstadt, Fachgebiet Graphisch-Interaktive Systeme  
Weitz, Paul
TU Darmstadt, Fachgebiet Graphisch-Interaktive Systeme  
Pöllabauer, Thomas  orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Wirth, Tristan
TU Darmstadt, Fachgebiet Graphisch-Interaktive Systeme  
Rak, Arne
TU Darmstadt, Fachgebiet Graphisch-Interaktive Systeme  
Kuijper, Arjan  orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Fellner, Dieter
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Conference
International Conference on Pattern Recognition and Artificial Intelligence 2024  
DOI
10.48550/arXiv.2405.12861
Language
English
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Keyword(s)
  • Branche: Automotive Industry

  • Branche: Healthcare

  • Branche: Bioeconomics

  • Branche: Cultural und Creative Economy

  • Research Line: Computer graphics (CG)

  • Research Line: Computer vision (CV)

  • Research Line: Machine learning (ML)

  • LTA: Machine intelligence, algorithms, and data structures (incl. semantics)

  • Computer vision

  • Machine learning

  • Robot vision

  • Image segmentation

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024