• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Semantic Harmonization of Alzheimer’s Disease Datasets Using AD-Mapper
 
  • Details
  • Full
Options
May 15, 2024
Journal Article
Title

Semantic Harmonization of Alzheimer’s Disease Datasets Using AD-Mapper

Abstract
Background: Despite numerous past endeavors for the semantic harmonization of Alzheimer’s disease (AD) cohort studies, an automatic tool has yet to be developed.
Objective: As cohort studies form the basis of data-driven analysis, harmonizing them is crucial for cross-cohort analysis. We aimed to accelerate this task by constructing an automatic harmonization tool.
Methods: We created a common data model (CDM) through cross-mapping data from 20 cohorts, three CDMs, and ontology terms, which was then used to fine-tune a BioBERT model. Finally, we evaluated the model using three previously unseen cohorts and compared its performance to a string-matching baseline model.
Results: Here, we present our AD-Mapper interface for automatic harmonization of AD cohort studies, which outperformed a string-matching baseline on previously unseen cohort studies. We showcase our CDM comprising 1218 unique variables.
Conclusion: AD-Mapper leverages semantic similarities in naming conventions across cohorts to improve mapping performance.
Author(s)
Wegner, Philipp
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Balabin, Helena
Ay, Mehmet Can  orcid-logo
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Bauermeister, Sarah
Killin, Lewis
Gallacher, John
Hofmann-Apitius, Martin  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Salimi, Yasamin  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Journal
Journal of Alzheimer's disease : JAD  
Open Access
DOI
10.3233/JAD-240116
Language
English
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Keyword(s)
  • Alzheimer’s disease

  • automatic data harmonization

  • cohort study

  • common data model

  • data interoperability

  • semantic mapping

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024