• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. A Concept Study for Feature Extraction and Modeling for Grapevine Yield Prediction
 
  • Details
  • Full
Options
2024
Journal Article
Title

A Concept Study for Feature Extraction and Modeling for Grapevine Yield Prediction

Abstract
Yield prediction in viticulture is an especially challenging research direction within the field of yield prediction. The characteristics that determine annual grapevine yields are plentiful, difficult to obtain, and must be captured multiple times throughout the year. The processes currently used in grapevine yield prediction are based mainly on manually captured data and rigid statistical measures derived from historical insights. Experts for data acquisition are scarce, and statistical models cannot meet the requirements of a changing environment, especially in times of climate change. This paper contributes a concept on how to overcome those drawbacks, by (1) proposing a deep learning driven approach for feature recognition and (2) explaining how Extreme Gradient Boosting (XGBoost) can be utilized for yield prediction based on those features, while being explainable and computationally inexpensive. The methods developed will be influential for the future of yield prediction in viticulture.
Author(s)
Huber, Florian
Hofmann, Benedikt
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Engler, Hannes
Gauweiler, Pascal
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Fischer, Benedikt  orcid-logo
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Herzog, Katja
Kicherer, Anna
Töpfer, Reinhard
Gruna, Robin  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Steinhage, Volker
Journal
VITIS. Journal of grapevine research  
Open Access
File(s)
Download (3.78 MB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.5073/vitis.2024.63.03
10.24406/publica-3135
Language
English
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Keyword(s)
  • Yield forecasting

  • viticulture

  • Deep Learning

  • Extreme Gradient Boosting

  • XGBoost

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024