• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Co3O4-Based Materials as Potential Catalysts for Methane Detection in Catalytic Gas Sensors
 
  • Details
  • Full
Options
2024
Journal Article
Title

Co3O4-Based Materials as Potential Catalysts for Methane Detection in Catalytic Gas Sensors

Abstract
The present work deals with the development of Co3O4-based catalysts for potential application in catalytic gas sensors for methane (CH4) detection. Among the transition-metal oxide catalysts, Co3O4 exhibits the highest activity in catalytic combustion. Doping Co3O4 with another metal can further improve its catalytic performance. Despite their promising properties, Co3O4 materials have rarely been tested for use in catalytic gas sensors. In our study, the influence of catalyst morphology and Ni doping on the catalytic activity and thermal stability of Co3O4-based catalysts was analyzed by differential calorimetry by measuring the thermal response to 1% CH4. The morphology of two Co3O4 catalysts and two NixCo3−xO4 with a Ni:Co molar ratio of 1:2 and 1:5 was studied using scanning transmission electron microscopy and energy dispersive X-ray analysis. The catalysts were synthesized by (co)precipitation with KOH solution. The investigations showed that Ni doping can improve the catalytic activity of Co3O4 catalysts. The thermal response of Ni-doped catalysts was increased by more than 20% at 400 °C and 450 °C compared to one of the studied Co3O4 oxides. However, the thermal response of the other Co3O4 was even higher than that of NixCo3−xO4 catalysts (8% at 400 °C). Furthermore, the modification of Co3O4 with Ni simultaneously brings stability problems at higher operating temperatures (≥400 °C) due to the observed inhomogeneous Ni distribution in the structure of NixCo3−xO4. In particular, the NixCo3−xO4 with high Ni content (Ni:Co ratio 1:2) showed apparent NiO separation and thus a strong decrease in thermal response of 8% after 24 h of heat treatment at 400 °C. The reaction of the Co3O4 catalysts remained quite stable. Therefore, controlling the structure and morphology of Co3O4 achieved more promising results, demonstrating its applicability as a catalyst for gas sensing.
Author(s)
Yurchenko, Olena  
Fraunhofer-Institut für Physikalische Messtechnik IPM  
Diehle, Patrick  
Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS  
Altmann, Frank  
Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS  
Schmitt, Katrin  
Fraunhofer-Institut für Physikalische Messtechnik IPM  
Wöllenstein, Jürgen  
Fraunhofer-Institut für Physikalische Messtechnik IPM  
Journal
Sensors. Online journal  
Conference
Eurosensors Conference 2023  
Open Access
DOI
10.3390/s24082599
Language
English
Fraunhofer-Institut für Physikalische Messtechnik IPM  
Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS  
Keyword(s)
  • Cobalt oxide

  • Catalyst

  • Catalytic sensors

  • Morphology

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024