• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Towards optimized tissue regeneration: a new 3D printable bioink of alginate/cellulose hydrogel loaded with thrombocyte concentrate
 
  • Details
  • Full
Options
2024
Journal Article
Title

Towards optimized tissue regeneration: a new 3D printable bioink of alginate/cellulose hydrogel loaded with thrombocyte concentrate

Abstract
Introduction: Autologous platelet concentrate (APC) are pro-angiogenic and can promote wound healing and tissue repair, also in combination with other biomaterials. However, challenging defect situations remain demanding. 3D bioprinting of an APC based bioink encapsulated in a hydrogel could overcome this limitation with enhanced physio-mechanical interface, growth factor retention/secretion and defect-personalized shape to ultimately enhance regeneration.
Methods: This study used extrusion-based bioprinting to create a novel bioink of alginate/cellulose hydrogel loaded with thrombocyte concentrate. Chemico-physical testing exhibited an amorphous structure characterized by high shape fidelity. Cytotoxicity assay and incubation of human osteogenic sarcoma cells (SaOs2) exposed excellent biocompatibility. enzyme-linked immunosorbent assay analysis confirmed pro-angiogenic growth factor release of the printed constructs, and co-incubation with HUVECS displayed proper cell viability and proliferation. Chorioallantoic membrane (CAM) assay explored the pro-angiogenic potential of the prints in vivo. Detailed proteome and secretome analysis revealed a substantial amount and homologous presence of pro-angiogenic proteins in the 3D construct.
Results: This study demonstrated a 3D bioprinting approach to fabricate a novel bioink of alginate/cellulose hydrogel loaded with thrombocyte concentrate with high shape fidelity, biocompatibility, and substantial pro-angiogenic properties.
Conclusion: This approach may be suitable for challenging physiological and anatomical defect situations when translated into clinical use.
Author(s)
Grandjean, Till
Johannes Gutenberg-Universität Mainz
Perumal, Natarajan
Johannes Gutenberg-Universität Mainz
Manicam, Caroline
Johannes Gutenberg-Universität Mainz
Matthey, Björn  
Fraunhofer-Institut für Keramische Technologien und Systeme IKTS  
Wu, Tao
Fraunhofer-Institut für Keramische Technologien und Systeme IKTS  
Thiem, Daniel
Johannes Gutenberg-Universität Mainz
Stein, Stefan
Georg-Speyer-Haus, Frankfurt am Main
Henrich, Dirk
Goethe-Universität Frankfurt
Kämmerer, Peer
Johannes Gutenberg-Universität Mainz
Al-Nawas, Bilal
Johannes Gutenberg-Universität Mainz
Ritz, Ulrike
Johannes Gutenberg-Universität Mainz
Blatt, Sebastian
Johannes Gutenberg-Universität Mainz
Journal
Frontiers in Bioengineering and Biotechnology  
Open Access
DOI
10.3389/fbioe.2024.1363380
Additional link
Full text
Language
English
Fraunhofer-Institut für Keramische Technologien und Systeme IKTS  
Keyword(s)
  • additive manufacturing

  • bioprinting

  • platelet rich fibrin

  • hydrogel

  • reconstruction

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024