• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Transferability of Machine Learning Models for Crop Classification in Remote Sensing Imagery Using a New Test Methodology: A Study on Phenological, Temporal, and Spatial Influences
 
  • Details
  • Full
Options
2024
Journal Article
Title

Transferability of Machine Learning Models for Crop Classification in Remote Sensing Imagery Using a New Test Methodology: A Study on Phenological, Temporal, and Spatial Influences

Abstract
Machine learning models are used to identify crops in satellite data, which achieve high classification accuracy but do not necessarily have a high degree of transferability to new regions. This paper investigates the use of machine learning models for crop classification using Sentinel-2 imagery. It proposes a new testing methodology that systematically analyzes the quality of the spatial transfer of trained models. In this study, the classification results of Random Forest (RF), eXtreme Gradient Boosting (XGBoost), Stochastic Gradient Descent (SGD), Multilayer Perceptron (MLP), Support Vector Machines (SVM), and a Majority Voting of all models and their spatial transferability are assessed. The proposed testing methodology comprises 18 test scenarios to investigate phenological, temporal, spatial, and quantitative (quantitative regarding available training data) influences. Results show that the model accuracies tend to decrease with increasing time due to the differences in phenological phases in different regions, with a combined F1-score of 82% (XGBoost) when trained on a single day, 72% (XGBoost) when trained on the half-season, and 61% when trained over the entire growing season (Majority Voting).
Author(s)
Hoppe, Hauke
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Dietrich, Peter
Universität Tübingen  
Marzahn, Philip
Universität Rostock  
Weiß, Thomas
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Nitzsche, Christian
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Lukas, Uwe Freiherr von  orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Wengerek, Thomas
Hochschule Stralsund
Borg, Erik
Deutsches Zentrum für Luft- und Raumfahrt -DLR-
Journal
Remote sensing  
Open Access
File(s)
Download (6.99 MB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.3390/rs16091493
10.24406/publica-3009
Additional full text version
Landing Page
Language
English
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Keyword(s)
  • Branche: Information Technology

  • Research Line: Machine learning (ML)

  • LTA: Machine intelligence, algorithms, and data structures (incl. semantics)

  • Machine learning

  • Remote Sensing

  • Satellite data

  • Classification methods

  • Classification performance

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024