• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Towards Access Control for Machine Learning Embeddings
 
  • Details
  • Full
Options
June 2024
Conference Paper
Title

Towards Access Control for Machine Learning Embeddings

Abstract
In this work, we explore the potential to make embeddings, which are becoming an integral part of machine-learning pipelines, shareable with the general public while providing self-contained access control. To this end, we apply attribute-based encryption and discuss a potential application for supply chain management.
Author(s)
Matzutt, Roman  orcid-logo
Fraunhofer-Institut für Angewandte Informationstechnik FIT  
Mainwork
EICC '24: Proceedings of the 2024 European Interdisciplinary Cybersecurity Conference  
Project(s)
Fortschrittliche Technologien zur Wahrung der Privatsphäre für Wissensgraphen in Unternehmen und künstliche Intelligenz  
Funder
Bundesministerium für Bildung und Forschung -BMBF-  
Conference
European Interdisciplinary Cybersecurity Conference 2024  
Open Access
DOI
10.1145/3655693.3661296
10.24406/publica-2994
File(s)
2024-eicccyfrp-matzutt-abe-embeddings.pdf (523.97 KB)
Rights
CC BY 4.0: Creative Commons Attribution
Language
English
Fraunhofer-Institut für Angewandte Informationstechnik FIT  
Keyword(s)
  • Attribute-based encryption

  • embeddings

  • access control

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024