• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Controlled Randomness Improves the Performance of Transformer Models
 
  • Details
  • Full
Options
March 19, 2024
Conference Paper
Title

Controlled Randomness Improves the Performance of Transformer Models

Abstract
During the pre-training step of natural language models, the main objective is to learn a general representation of the pre-training dataset, usually requiring large amounts of textual data to capture the complexity and diversity of natural language. Contrasting this, in most cases, the size of the data available to solve the specific downstream task is often dwarfed by the aforementioned pre-training dataset, especially in domains where data is scarce. We introduce controlled randomness, i.e. noise, into the training process to improve fine-tuning language models and explore the performance of targeted noise in addition to the parameters of these models. We find that adding such noise can improve the performance in our two downstream tasks of joint named entity recognition and relation extraction and text summarization.
Author(s)
Deußer, Tobias  orcid-logo
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Zhao, Cong
Deutsche Telekom AG  
Krämer, Wolfgang
Deutsche Telekom AG  
Leonhard, David
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Bauckhage, Christian  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Sifa, Rafet  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Mainwork
22nd IEEE International Conference on Machine Learning and Applications, ICMLA 2023. Proceedings  
Project(s)
The Lamarr Institute for Machine Learning and Artificial Intelligence  
Funder
Bundesministerium für Bildung und Forschung -BMBF-  
Conference
International Conference on Machine Learning and Applications 2023  
Open Access
File(s)
publica_controlled_randomness.pdf (250.47 KB)
Rights
Under Copyright
DOI
10.1109/ICMLA58977.2023.00274
10.24406/publica-2993
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Keyword(s)
  • Natural Language Processing

  • Regularization

  • Transformer

  • Machine Learning

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024