• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Space Sampling Techniques Comparison for a Synthetic Low-Pass Filter Bayesian Neural Network
 
  • Details
  • Full
Options
December 8, 2023
Conference Paper
Title

Space Sampling Techniques Comparison for a Synthetic Low-Pass Filter Bayesian Neural Network

Abstract
This paper presents a comparative analysis of three sampling techniques for generating space points to develop a Bayesian neural network (BNN) surrogate model of a synthetic second-order low-pass filter. The objective is to assess the effectiveness and efficiency of different sampling methods in the performance of the Bayesian surrogate model. The study draws inspiration from widely used sampling techniques such as uniform distribution, uniformly distributed random numbers, and Latin Hypercube Sampling (LHS). The results reveal that the BNN surrogate model achieves the best performance when using the LHS sampling method highlighting the impact of sampling techniques on the surrogate model's performance.
Author(s)
Dávalos-Guzmán, Jorge
Intel Corporation  
Chavez-Hurtado, Jose L.
The Jesuit University of Guadalajara
Brito-Brito, Zabdiel
Centre Tecnològic de Telecomunicacions de Catalunya (CTTC/CERCA)
Ortstein, Katrin  orcid-logo
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Mainwork
4th IEEE MTT-S Latin America Microwave Conference, LAMC 2023. Proceedings  
Conference
Latin America Microwave Conference 2023  
Open Access
DOI
10.1109/LAMC59011.2023.10375546
Additional link
Full text
Language
English
Fraunhofer-Institut für Integrierte Schaltungen IIS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024