• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Towards Automated Regulatory Compliance Verification in Financial Auditing with Large Language Models
 
  • Details
  • Full
Options
2023
Conference Paper
Title

Towards Automated Regulatory Compliance Verification in Financial Auditing with Large Language Models

Abstract
The auditing of financial documents, historically a labor-intensive process, stands on the precipice of transformation. AI-driven solutions have made inroads into streamlining this process by recommending pertinent text passages from financial reports to align with the legal requirements of accounting standards. However, a glaring limitation remains: these systems commonly fall short in verifying if the recommended excerpts indeed comply with the specific legal mandates. Hence, in this paper, we probe the efficiency of publicly available Large Language Models (LLMs) in the realm of regulatory compliance across different model configurations. We place particular emphasis on comparing cutting-edge open-source LLMs, such as Llama-2, with their proprietary counterparts like OpenAI's GPT models. This comparative analysis leverages two custom datasets provided by our partner PricewaterhouseCoopers (PwC) Germany. We find that the open-source Llama-2 70 billion model demonstrates outstanding performance in detecting non-compliance or true negative occurrences, beating all their proprietary counterparts. Nevertheless, proprietary models such as GPT-4 perform the best in a broad variety of scenarios, particularly in non-English contexts.
Author(s)
Berger, Armin
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Hillebrand, Lars Patrick  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Leonhard, David
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Deußer, Tobias  orcid-logo
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Bell Felix de Oliveira, Thiago
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Dilmaghani, Tim
PricewaterhouseCoopers GmbH
Khaled, Mohamed
PricewaterhouseCoopers GmbH
Kliem, Bernd
PricewaterhouseCoopers GmbH
Loitz, Rüdiger
PricewaterhouseCoopers GmbH
Bauckhage, Christian  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Sifa, Rafet  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Mainwork
IEEE International Conference on Big Data 2023. Proceedings  
Conference
International Conference on Big Data 2023  
DOI
10.1109/BigData59044.2023.10386518
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Keyword(s)
  • Compliance Check

  • Financial Auditing

  • Large Language Models

  • Text Matching

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024