• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Enhancing reproducibility in precipitate analysis: A FAIR approach with automated dark-field transmission electron microscope image processing
 
  • Details
  • Full
Options
2024
Journal Article
Title

Enhancing reproducibility in precipitate analysis: A FAIR approach with automated dark-field transmission electron microscope image processing

Abstract
High-strength aluminum alloys used in aerospace and automotive applications obtain their strength through precipitation hardening. Achieving the desired mechanical properties requires precise control over the nanometer-sized precipitates. However, the microstructure of these alloys changes over time due to aging, leading to a deterioration in strength. Typically, the size, number, and distribution of precipitates for a quantitative assessment of microstructural changes are determined by manual analysis, which is subjective and time-consuming. In our work, we introduce a progressive and automatable approach that enables a more efficient, objective, and reproducible analysis of precipitates. The method involves several sequential steps using an image repository containing dark-field transmission electron microscopy (DF-TEM) images depicting various aging states of an aluminum alloy. During the process, precipitation contours are generated and quantitatively evaluated, and the results are comprehensibly transferred into semantic data structures. The use and deployment of Jupyter Notebooks, along with the beneficial implementation of Semantic Web technologies, significantly enhances the reproducibility and comparability of the findings. This work serves as an exemplar of FAIR image and research data management.
Author(s)
Zia, Ghezal Ahmad Jan
Bundesanstalt für Materialforschung und -prüfung -BAM-, Berlin  
Hanke, Thomas
Fraunhofer-Institut für Werkstoffmechanik IWM  
Skrotzki, Birgit
Bundesanstalt für Materialforschung und -prüfung -BAM-, Berlin  
Völker, Christoph
Bundesanstalt für Materialforschung und -prüfung -BAM-, Berlin  
Bayerlein, Bernd
Bundesanstalt für Materialforschung und -prüfung -BAM-, Berlin  
Journal
Integrating materials and manufacturing innovation  
Project(s)
Innovation platform MaterialDigital (PMD)  
Datenökosystem für die digitale Materialforschung auf Basis Ontologie-basierter digitaler Repräsentationen von Kupfer und Kupferlegierungen
Funder
Bundesministerium für Bildung und Forschung -BMBF-  
Bundesministerium für Bildung und Forschung -BMBF-  
Open Access
DOI
10.1007/s40192-023-00331-5
Language
English
Fraunhofer-Institut für Werkstoffmechanik IWM  
Keyword(s)
  • Automated image analysis

  • FAIR research data management

  • Reproducibility

  • Microstructural changes

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024