• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Anomaly Detection using a Semi-Supervised Deep Learning Model on Open 5G Core Metrics during User-Equipment Registration
 
  • Details
  • Full
Options
November 2023
Conference Paper
Title

Anomaly Detection using a Semi-Supervised Deep Learning Model on Open 5G Core Metrics during User-Equipment Registration

Abstract
Examining and detecting anomalies in key metrics from core Network Function (NF) modules during User Equipment (UE) registration is vital for ensuring Quality of Service (QoS) in ever-expanding 5G networks. Existing monitoring methods often overlook these anomaly detection approaches from their data plane perspectives. In this study, we focus exclusively on the semi-supervised Long Short-Term Memory AutoEncoder (LSTM AE) model for anomaly detection. Through the analysis of CPU and memory metrics during UE registration, stress-related anomalies are pinpointed via simulations conducted on the Open 5G Core. Results show that the LSTM AE model achieves a remarkable accuracy of over 97%, offering superior anomaly detection performance with fewer false positives. This work significantly enhances anomaly detection within core 5G network modules, ultimately contributing to improved QoS.
Author(s)
Gopikrishnan, Akash
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Prakash, Arun  
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Hein, Christian  
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Mößner, Klauss
Technische Universität Chemnitz  
Corici, Marius-Iulian  
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Magedanz, Thomas  
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Mainwork
IEEE Conference on Standards for Communications and Networking, CSCN 2023  
Conference
Conference on Standards for Communications and Networking 2023  
DOI
10.1109/CSCN60443.2023.10453203
Language
English
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Keyword(s)
  • Anomaly Detection

  • Long Short Term Memory AutoEncoder

  • Open 5G Core

  • 5G mobile communication systems

  • Brain

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024