• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Characterization of Out-of-distribution Samples from Uncertainty Maps Using Supervised Machine Learning
 
  • Details
  • Full
Options
2024
Conference Paper
Title

Characterization of Out-of-distribution Samples from Uncertainty Maps Using Supervised Machine Learning

Abstract
The quality of land use maps often refers to the data quality, but distributional uncertainty between training and test data must also be considered. In order to address this uncertainty, we follow the strategy to detect out-of-distribution samples using uncertainty maps. Then, we use supervised machine learning to identify those samples. For the investigations, we use an uncertainty metric adapted from depth maps fusion and Monte-Carlo dropout based predicted probabilities. The results show a correlation between out-of-distribution samples, misclassifications and uncertainty. Thus, on the one hand, out-of-distribution samples are identifiable through uncertainty, on the other hand it is difficult to distinguish between misclassification, anomalies and out-of-distribution.
Author(s)
Budde, Lina E.
Bulatov, Dimitri  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Strauß, Eva
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Qiu, Kevin
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Iwaszczuk, Dorota
Mainwork
Pattern Recognition. 45th DAGM German Conference, DAGM GCPR 2023. Proceedings  
Conference
German Conference on Pattern Recognition 2023  
DOI
10.1007/978-3-031-54605-1_17
Language
English
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024