Options
2023
Conference Paper
Title
Explaining Face Recognition Through SHAP-Based Pixel-Level Face Image Quality Assessment
Abstract
Biometric face recognition models are widely used in many different real-world applications. The output of these models can be used to make decisions that may strongly impact people. However, an explanation of how and why such outputs are derived is usually not given to humans. The lack of explainability of face recognition models leads to distrust in their decisions and does not encourage their use. The performance of face recognition models is influenced by the quality of the input image. In case the quality of a face image is too low, the face recognition system will reject it to avoid compromising its performance. The quality is evaluated by Face Image Quality (FIQ) approaches, which assigned quality scores to the input images. Pixel-level face image quality (PLFIQ) increases the explainability of quality scores by explaining face image quality at the pixel level. This allows the users of face recognition systems to spot low-quality areas and allows them to make guided corrections. Previous works introduced the concept of PLFIQ and proposed evaluation procedures. This work proposes a new way of computing PLFIQ values depending on given FIQ methods using Shapley Values. They score the contribution of each pixel to the overall image quality evaluation. Therefore, Integrating Shapley Values increases the explainability of the FIQ models. Results show that using these methods leads to significantly better and more robust PLFIQ values estimates and thus provide better explainability.
Keyword(s)
Branche: Information Technology
Research Line: Computer vision (CV)
Research Line: Human computer interaction (HCI)
Research Line: Machine learning (ML)
LTA: Interactive decision-making support and assistance systems
LTA: Machine intelligence, algorithms, and data structures (incl. semantics)
LTA: Generation, capture, processing, and output of images and 3D models
Biometrics
Face recognition
Machine learning
Deep learning