Options
January 2024
Journal Article
Title
Enhancing pre-clinical research with simplified intestinal cell line models
Abstract
Two-dimensional culture remains widely employed to determine the bioavailability of orally delivered drugs. To gain more knowledge about drug uptake mechanisms and risk assessment for the patient after oral drug admission, intestinal in vitro models demonstrating a closer similarity to the in vivo situation are needed. In particular, Caco-2 cell-based Transwell® models show advantages as they are reproducible, cost-efficient, and standardized. However, cellular complexity is impaired and cell function is strongly modified as important transporters in the apical membrane are missing. To overcome these limitations, primary organoid-based human small intestinal tissue models were developed recently but the application of these cultures in pre-clinical research still represents an enormous challenge, as culture setup is complex as well as time- and cost-intensive. To overcome these hurdles, we demonstrate the establishment of primary organoid-derived intestinal cell lines by immortalization. Besides exhibiting cellular diversity of the organoid, these immortalized cell lines enable a standardized and more cost-efficient culture. Further, our cell line-based Transwell®-like models display an organ-specific epithelial barrier integrity, ultrastructural features and representative transport functions. Altogether, our novel model systems are cost-efficient with close similarity to the in vivo situation, therefore favoring their use in bioavailability studies in the context of pre-clinical screenings.
Author(s)
Damigos, Spyridon
University Hospital Würzburg, Department of Tissue Engineering and Regenerative Medicine (TERM)