• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Partial Discharge Characterization of Ceramic Power Electronics Circuit Carriers Assisted by Machine Learning
 
  • Details
  • Full
Options
2023
Conference Paper
Title

Partial Discharge Characterization of Ceramic Power Electronics Circuit Carriers Assisted by Machine Learning

Abstract
This paper presents an approach for transferring knowledge about partial discharges in polymer insulators to ceramic insulators with the aid of machine learning. It is shown how various machine-learnable features can be generated from partial discharge measurement data and processed in varying artificial neural networks for classification. It is found that polymer-based partial discharges can be classified using this method. In addition, the Long Short-Term Memory based artificial neural network enables partial discharge cause finding and thus fault detection in ceramic power electronics substrates.
Author(s)
Drechsel, Johannes  
Fraunhofer-Institut für Keramische Technologien und Systeme IKTS  
Barth, Henry  orcid-logo
Fraunhofer-Institut für Keramische Technologien und Systeme IKTS  
Rebenklau, Lars  
Fraunhofer-Institut für Keramische Technologien und Systeme IKTS  
Mainwork
24th European Microelectronics & Packaging Conference (EMPC 2023)  
Conference
European Microelectronics & Packaging Conference 2023  
DOI
10.23919/EMPC55870.2023.10418398
Language
English
Fraunhofer-Institut für Keramische Technologien und Systeme IKTS  
Keyword(s)
  • Ceramics

  • Partial Discharges

  • Machine Learning

  • High Voltage

  • High Frequency

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024