• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. From attribution maps to human-understandable explanations through Concept Relevance Propagation
 
  • Details
  • Full
Options
2023
Journal Article
Title

From attribution maps to human-understandable explanations through Concept Relevance Propagation

Abstract
The field of explainable artificial intelligence (XAI) aims to bring transparency to today’s powerful but opaque deep learning models. While local XAI methods explain individual predictions in the form of attribution maps, thereby identifying ‘where’ important features occur (but not providing information about ‘what’ they represent), global explanation techniques visualize what concepts a model has generally learned to encode. Both types of method thus provide only partial insights and leave the burden of interpreting the model’s reasoning to the user. Here we introduce the Concept Relevance Propagation (CRP) approach, which combines the local and global perspectives and thus allows answering both the ‘where’ and ‘what’ questions for individual predictions. We demonstrate the capability of our method in various settings, showcasing that CRP leads to more human interpretable explanations and provides deep insights into the model’s representation and reasoning through concept atlases, concept-composition analyses, and quantitative investigations of concept subspaces and their role in fine-grained decision-making.
Author(s)
Achtibat, Reduan
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Dreyer, Maximilian
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Eisenbraun, Ilona
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Bosse, Sebastian
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Wiegand, Thomas  
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Samek, Wojciech  
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Lapuschkin, Sebastian Roland
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Journal
Nature machine intelligence  
Open Access
DOI
10.1038/s42256-023-00711-8
Additional link
Full text
Language
English
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024