• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Demonstration of Differential Mode Ferroelectric Field-Effect Transistor Array-Based in-Memory Computing Macro for Realizing Multiprecision Mixed-Signal Artificial Intelligence Accelerator
 
  • Details
  • Full
Options
2023
Journal Article
Title

Demonstration of Differential Mode Ferroelectric Field-Effect Transistor Array-Based in-Memory Computing Macro for Realizing Multiprecision Mixed-Signal Artificial Intelligence Accelerator

Abstract
Harnessing multibit precision in nonvolatile memory (NVM)-based synaptic core can accelerate multiply and accumulate (MAC) operation of deep neural network (DNN). However, NVM-based synaptic cores suffer from the trade-off between bit density and performance. The undesired performance degradation with scaling, limited bit precision, and asymmetry associated with weight update poses a severe bottleneck in realizing a high-density synaptic core. Herein, 1) evaluation of novel differential mode ferroelectric field-effect transistor (DM-FeFET) bitcell on a crossbar array of 4 K devices; 2) validation of weighted sum operation on 28 nm DM-FeFET crossbar array; 3) bit density of 223Mb mm-2, which is ≈2× improvement compared to conventional FeFET array; 4) 196 TOPS/W energy efficiency for VGG-8 network; and 5) superior bit error rate (BER) resilience showing ≈94% training and 88% inference accuracy with 1% BER are demonstrated.
Author(s)
Parmar, Vivek
Müller, Franz  
Fraunhofer-Institut für Photonische Mikrosysteme IPMS  
Hsuen, Jing-Hua
Kingra, Sandeep Kaur
Laleni, Nelli
Fraunhofer-Institut für Photonische Mikrosysteme IPMS  
Raffel, Yannick
Fraunhofer-Institut für Photonische Mikrosysteme IPMS  
Lederer, Maximilian
Fraunhofer-Institut für Photonische Mikrosysteme IPMS  
Vardar, Alptekin
Fraunhofer-Institut für Photonische Mikrosysteme IPMS  
Seidel, Konrad  
Fraunhofer-Institut für Photonische Mikrosysteme IPMS  
Soliman, Taha
Kirchner, Tobias
Ali, Tarek
Dünkel, Stefan
Beyer, Sven
Wu, Tian-Li
De, Sourav
Fraunhofer-Institut für Photonische Mikrosysteme IPMS  
Suri, Manan
Kämpfe, Thomas  orcid-logo
Fraunhofer-Institut für Photonische Mikrosysteme IPMS  
Journal
Advanced intelligent systems  
Project(s)
Technology and hardware for neuromorphic computing  
Funder
European Commission  
Open Access
DOI
10.1002/aisy.202200389
Language
English
Fraunhofer-Institut für Photonische Mikrosysteme IPMS  
Keyword(s)
  • convolutional neural network (CNN)

  • ferroelectric field-effect transistor (FeFET)

  • in-memory computing (IMC)

  • nonvolatile memory (NVM)

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024