• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Autoencoder-Based Learning of Transmission Parameters in Fast Pulse-Echo Ultrasound Imaging Employing Sparse Recovery
 
  • Details
  • Full
Options
2023
Conference Paper
Title

Autoencoder-Based Learning of Transmission Parameters in Fast Pulse-Echo Ultrasound Imaging Employing Sparse Recovery

Abstract
There is recently a notable rise in the exploration of pulse-echo ultrasound image reconstruction techniques that address the inverse problem employing sparse signal and rely on a single measurement cycle. Nevertheless, these techniques continue to pose significant challenges with regard to accuracy of estimations. Previous studies have endeavored to decrease the correlation between received samples in each transducer array in order to enhance accuracy of sparsely approximated solutions to inverse problems. In this paper, our objective is to learn the transmission parameters within a parametric measurement matrix by employing an autoencoder, which encodes sparse spatial data with a parametric measurement matrix and subsequently decodes it using Fast Iterative Shrinkage-Thresholding Algorithm (FISTA). Outcomes exhibit superior performance in comparison to both state-of-art random selection of the parameters and conventional plane wave imaging (PWI) scenarios in terms of reconstruction accuracy.
Author(s)
Cakiroglu, Ozan
Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP  
Perez Mejia, Eduardo Jose
Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP  
Roemer, Florian  
Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP  
Schiffner, Martin
Mainwork
IEEE 9th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, CAMSAP 2023  
Conference
International Workshop on Computational Advances in Multi-Sensor Adaptive Processing 2023  
DOI
10.1109/CAMSAP58249.2023.10403443
Language
English
Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP  
Keyword(s)
  • pulse-echo ultrasound image reconstruction technique

  • inverse scattering problem

  • learned incident waves

  • sparse signal recovery

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024