• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Prototyping Reconfigurable RRAM-Based AI Accelerators Using the RISC-V Ecosystem and Digital Twins
 
  • Details
  • Full
Options
August 25, 2023
Conference Paper
Title

Prototyping Reconfigurable RRAM-Based AI Accelerators Using the RISC-V Ecosystem and Digital Twins

Abstract
The recent decades have given advent to the rise of sophisticated High Performance Computing (HPC) accelerators, vastly speeding up calculations. In the last years dedicated AI accelerators, meant for the evaluation of Artificial Neural Networks, have gathered traction. Resistive Random Access Memory (RRAM) devices are a possible future candidate for these accelerators since crossbar implementations allow for the evaluation of matrix vector multiplications in O(1). Unfortunately integrating these novel devices into accelerators challenges since they still suffer from device variations and require sophisticated peripheral circuitry. Additionally, suitable design flows are missing since these cells are difficult to integrate into the traditional digital flow. While multiple foundries are able to fabricate promising RRAM prototypes suffering less from device variations, full system integration tends to be lacking. Fortunately the rise of the RISC-V ecosystem has enabled eased access to a fully customizable ISA. We propose to exploit the advantages of the RRAM devices combined with the flexibility of RISC-V cores by integrating multiple RRAM-based blocks into a RISC-V core via Memory Mapped I/O (MMIO), resulting in an architecture which can be reconfigured in software. Additionally, we propose a possible approach for the design, simulation and verification of large RRAM systems, namely setting up three closely intertwined simulation environments and illustrate its applicability by integrating, characterizing and validating a RRAM-based MVM block fabricated in 130 nm technology. Finally, we demonstrate that RRAM technologies might be ready for HPC.
Author(s)
Fritscher, Markus
Veronesi, Alessandro
Baroni, Andrea
Wen, Jianan
Spätling, Thorsten
Fraunhofer-Einrichtung für Mikrosysteme und Festkörper-Technologien EMFT  
Mahadevaiah, Mamathamba Kalishettyhalli
Herfurth, Norbert
Perez, Eduardo
Ulbricht, Markus
Reichenbach, Marc
Hagelauer, Amelie  
Fraunhofer-Einrichtung für Mikrosysteme und Festkörper-Technologien EMFT  
Krstic, Milos
Mainwork
High Performance Computing. ISC High Performance 2023 International Workshops  
Project(s)
Innovationscampus Elektronik und Mikrosensorik Cottbus  
Energieeffiziente Datenverarbeitung im autonomen Fahrzeug mittels Mehrprozessorsystem und integrierten KI-Beschleunigern  
Entwicklungsplattform für vertrauenswürdige IoT-Mikrochips mit innovativem KI-Co-Prozessor  
Härtung der Wertschöpfungskette durch quelloffene, vertrauenswürdige EDA-Tools und Prozessoren  
6G Research and Innovation Cluster (6G-RIC) Offene und sichere 6G-Technologien: Weltmarktchance für Deutschland; Teilvorhaben: mmWellen und sub-THz Schaltungen und Systeme für 6G  
Funder
Bundesministerium für Bildung und Forschung -BMBF-  
Bundesministerium für Bildung und Forschung -BMBF-  
Bundesministerium für Bildung und Forschung -BMBF-  
Bundesministerium für Bildung und Forschung -BMBF-  
Bundesministerium für Bildung und Forschung -BMBF-  
Conference
International Conference on High Performance Computing 2023  
International Workshop on RISC-V for HPC 2023  
DOI
10.1007/978-3-031-40843-4_37
Language
English
Fraunhofer-Einrichtung für Mikrosysteme und Festkörper-Technologien EMFT  
Keyword(s)
  • RRAM

  • HPC

  • RISC-V

  • ANN

  • System integration

  • ASIC

  • EDA

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024