• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Correlation of CT-based bone mineralization with drilling-force measurements in anatomical specimens is suitable to investigate planning of trans-pedicular spine interventions
 
  • Details
  • Full
Options
2024
Journal Article
Title

Correlation of CT-based bone mineralization with drilling-force measurements in anatomical specimens is suitable to investigate planning of trans-pedicular spine interventions

Abstract
This interdisciplinary study examined the relationship between bone density and drilling forces required during trans-pedicular access to the vertebra using fresh–frozen thoraco-lumbar vertebrae from two female body donors (A, B). Before and after biomechanical examination, samples underwent high-resolution CT-quantification of total bone density followed by software-based evaluation and processing. CT density measurements (n = 4818) were calculated as gray values (GV), which were highest in T12 for both subjects (GVmaxA = 3483.24, GVmaxB = 3160.33). Trans-pedicular drilling forces F (Newton N) were highest in L3 (FmaxB = 5.67 N) and L4 (FmaxA = 5.65 N). In 12 out of 13 specimens, GVs significantly (p < 0.001) correlated with force measurements. Among these, Spearman correlations r were poor in two lumbar vertebrae, fair in five specimens, and moderately strong in another five specimens, and highest for T11 (rA = 0.721) and L5 (rB = 0.690). Our results indicate that CT-based analysis of vertebral bone density acquired in anatomical specimens is a promising approach to predict the drilling force appearance as surrogate parameter of its biomechanical properties by e.g., linear regression analysis. The study may be of value as basis for biomechanical investigations to improve planning of the optimal trajectory and to define safety margins for drilling forces during robotic-assisted trans-pedicular interventions on the spine in the future.
Author(s)
Wolff, Stefanie
Adler, Simon  
Fraunhofer-Institut für Fabrikbetrieb und -automatisierung IFF  
Eppler, Elisabeth
Fischer, Karin
Lux, Anke
Rothkötter, Hermann-Josef
Skalej, Martin
Journal
Scientific Reports  
Open Access
DOI
10.1038/s41598-023-50204-2
Language
English
Fraunhofer-Institut für Fabrikbetrieb und -automatisierung IFF  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024