• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Optimization of Image Preprocessing and Background Influences using a Depth Camera for Person Re-Identification on a Mobile Robot
 
  • Details
  • Full
Options
August 2023
Conference Paper
Title

Optimization of Image Preprocessing and Background Influences using a Depth Camera for Person Re-Identification on a Mobile Robot

Abstract
In this paper, we optimize datasets with different image preprocessing techniques for person re-identification using the ResNet18 model on a mobile robot with limited hardware, e.g., computational power and depth camera. For this, we create 16 datasets for which we discovered that the inverted original images, from the IR gray value images of the depth camera, results in the highest values with an r1, r5 and mAP of 98.48 %,99.82 % and 80.86 %. Additionally, we explore the cross-dataset evaluation for the 16 datasets to examine the robustness of our model, which points to a low generalizability. The scores are associated with the similarity between the trained and evaluated dataset.
Author(s)
Flores, Sebastian
Fraunhofer-Institut für Materialfluss und Logistik IML  
Jost, Jana  
Fraunhofer-Institut für Materialfluss und Logistik IML  
Boztoprak, Zeynep
Fraunhofer-Institut für Materialfluss und Logistik IML  
Mainwork
IEEE 19th International Conference on Automation Science and Engineering, CASE 2023  
Conference
International Conference on Automation Science and Engineering 2023  
DOI
10.1109/CASE56687.2023.10260509
Language
English
Fraunhofer-Institut für Materialfluss und Logistik IML  
Keyword(s)
  • Cameras

  • Image processing

  • Computational depth

  • Optimisations

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024