• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Symmetry-Aware Siamese Network: Exploiting Pathological Asymmetry for Chest X-Ray Analysis
 
  • Details
  • Full
Options
September 22, 2023
Conference Paper
Title

Symmetry-Aware Siamese Network: Exploiting Pathological Asymmetry for Chest X-Ray Analysis

Abstract
The human body shows elements of bilateral symmetry for various body parts, including the lung. This symmetry can be disturbed by a variety of diseases or abnormalities, e.g. by lung diseases such as pneumonia. While radiologists use lung field symmetry information in their radiological examinations to analyze chest X-rays, it is still underutilized in the field of computer vision. To investigate the potential of pathologically induced asymmetry of the lung field for the automatic detection of healthy and diseased patients, we implement a symmetry-aware architecture. The model is based on a Siamese network with a DenseNet backbone and a symmetry-aware contrastive loss function. Two different processing pipelines are investigated: first, the scan is processed as a whole image, and second, the left and right lung fields are separated. This enables an independent determination of the most important features of each lung field. Compared to state-of-the-art baseline models (DenseNet, Mask R-CNN), symmetry-aware training can improve the AUROC score by up to 10%. Furthermore, the findings indicate that, by integrating the bilateral symmetry of the lung field, the interpretability of the models increases. The generated probability maps show a stronger focus on lung field and disease features compared to state-of-the-art algorithms like Grad-Cam++ for heat map generation or Mask R-CNN for object detection.
Author(s)
Schneider, Helen
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Yildiz, Elif Cansu
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Biesner, David  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Layer, Yannik C.
Universitätsklinikum Bonn
Wulff, Benjamin
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Nowak, Sebastian
Universitätsklinikum Bonn
Theis, Maike
Universitätsklinikum Bonn
Sprinkart, Alois M.
Universitätsklinikum Bonn
Attenberger, Ulrike I.
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Sifa, Rafet  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Mainwork
Artificial Neural Networks and Machine Learning - ICANN 2023. 32nd International Conference on Artificial Neural Networks. Proceedings. Pt.IV  
Conference
International Conference on Artificial Neural Networks 2023  
DOI
10.1007/978-3-031-44216-2_14
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Keyword(s)
  • Chest X-Ray

  • Contrastive Loss

  • Lung Abnormalities

  • Symmetry-aware Model

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024