• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Data-Driven Subsampling Matrices Design for Phased Array Ultrasound Nondestructive Testing
 
  • Details
  • Full
Options
2023
Conference Paper
Title

Data-Driven Subsampling Matrices Design for Phased Array Ultrasound Nondestructive Testing

Abstract
By subsampling optimally in the spatial and tempo ral domains, ultrasound imaging can achieve high performance, while also accelerating data acquisition and reducing storage requirements. We study the design of experiment problem that attempts to find an optimal choice of the subsampling patterns, leading to a non-convex combinatorial optimization problem. Recently, deep learning was shown to provide a feasible approach for solving such problems efficiently by virtue of the softmax function as a differentiable approximation of the one-hot encoded subsampling vectors. We incorporate softmax neural networks into information theory-based and task-based algorithms, respectively, to design optimal subsampling matrices in Full Matrix Capture (FMC) measurements predicated on compressed sensing theory.
Author(s)
Wang, Han
Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP  
Perez Mejia, Eduardo Jose
Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP  
Römer, Florian  
Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP  
Mainwork
IEEE International Ultrasonics Symposium, IUS 2023. Proceedings  
Project(s)
Compressed Sensing für die ultraschallbasierte Materialprüfung
Funder
Deutsche Forschungsgemeinschaft -DFG-, Bonn  
Conference
International Ultrasonics Symposium 2023  
DOI
10.1109/IUS51837.2023.10308257
Language
English
Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP  
Keyword(s)
  • Compressed Sensing

  • Deep Learning

  • Ultrasonic Signal Processing

  • Cramer-Rao-Bound

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024