• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Safeguarding Learning-based Control for Smart Energy Systems with Sampling Specifications
 
  • Details
  • Full
Options
2023
Conference Paper
Title

Safeguarding Learning-based Control for Smart Energy Systems with Sampling Specifications

Abstract
We study challenges using reinforcement learning in controlling energy systems, where apart from performance requirements, one has additional safety requirements such as avoiding blackouts. We detail how these safety requirements in real-time temporal logic can be strengthened via discretization into linear temporal logic (LTL), such that the satisfaction of the LTL formulae implies the satisfaction of the original safety requirements. The discretization enables advanced engineering methods such as synthesizing shields for safe reinforcement learning as well as formal verification, where for statistical model checking, the probabilistic guarantee acquired by LTL model checking forms a lower bound for the satisfaction of the original real-time safety requirements.
Author(s)
Cheng, Chih-Hong  
Fraunhofer-Institut für Kognitive Systeme IKS  
Gupta, Pragya Kirti
Fraunhofer-Institut für Kognitive Systeme IKS  
Venkataramanan, Venkatesh Prasad
Fraunhofer-Institut für Kognitive Systeme IKS  
Hsu, Yun-Fei
Fraunhofer-Institut für Kognitive Systeme IKS  
Burton, Simon  
Fraunhofer-Institut für Kognitive Systeme IKS  
Mainwork
IEEE 28th Pacific Rim International Symposium on Dependable Computing, PRDC 2023. Proceedings  
Project(s)
IKS-Ausbauprojekt  
Funder
Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie  
Conference
Pacific Rim International Symposium on Dependable Computing 2023  
Open Access
DOI
10.1109/PRDC59308.2023.00037
10.24406/publica-2368
File(s)
Download (405.33 KB)
Rights
Under Copyright
Language
English
Fraunhofer-Institut für Kognitive Systeme IKS  
Fraunhofer Group
Fraunhofer-Verbund IUK-Technologie  
Keyword(s)
  • safety

  • reinforcement learning

  • RL

  • energy grid

  • energy system

  • linear temporal logic

  • LTL

  • model checking

  • probabilistic logic

  • formal verification

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024