• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Extracting robotic task plan from natural language instruction using BERT and syntactic dependency parser
 
  • Details
  • Full
Options
November 13, 2023
Conference Paper
Title

Extracting robotic task plan from natural language instruction using BERT and syntactic dependency parser

Abstract
Natural language encodes rich sequential and contextual information. A task plan for robots can be extracted from natural language instruction through semantic understanding. This information includes sequential actions, target objects and descriptions of working environment. Current systems focus on single-domain understanding such as household or industrial assembly settings, and many rule-based approach have been developed in this context. Thanks to the development of deep learning, data-driven contextual language understanding shows promising results. In this work, an information extraction system is proposed for domain-independent understanding of robotic task plans. The developed approach is based on a pre-trained BERT-model and a syntactic dependency parser. To evaluate the performance, experiments are conducted on three different datasets.
Author(s)
Lu, Shuang  orcid-logo
Fraunhofer-Institut für Gießerei-, Composite- und Verarbeitungstechnik IGCV  
Berger, Julia  
Fraunhofer-Institut für Gießerei-, Composite- und Verarbeitungstechnik IGCV  
Schilp, Johannes  
Fraunhofer-Institut für Gießerei-, Composite- und Verarbeitungstechnik IGCV  
Mainwork
32nd IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2023  
Project(s)
MeMoRob
Funder
Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie  
Conference
International Conference on Robot and Human Interactive Communication 2023  
DOI
10.1109/RO-MAN57019.2023.10309598
Language
English
Fraunhofer-Institut für Gießerei-, Composite- und Verarbeitungstechnik IGCV  
Fraunhofer Group
Fraunhofer-Verbund Produktion  
Keyword(s)
  • deep learning

  • visualization

  • service robotic

  • natural language modeling

  • semantics

  • syntactics

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024