• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Anderes
  4. A Survey on Deep Learning Techniques for Action Anticipation
 
  • Details
  • Full
Options
September 29, 2023
Paper (Preprint, Research Paper, Review Paper, White Paper, etc.)
Title

A Survey on Deep Learning Techniques for Action Anticipation

Title Supplement
Published on arXiv
Abstract
The ability to anticipate possible future human actions is essential for a wide range of applications, including autonomous driving and human-robot interaction. Consequently, numerous methods have been introduced for action anticipation in recent years, with deep learning-based approaches being particularly popular. In this work, we review the recent advances of action anticipation algorithms with a particular focus on daily-living scenarios. Additionally, we classify these methods according to their primary contributions and summarize them in tabular form, allowing readers to grasp the details at a glance. Furthermore, we delve into the common evaluation metrics and datasets used for action anticipation and provide future directions with systematical discussions.
Author(s)
Zhong, Zeyun
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Martin, Manuel  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Voit, Michael  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Gall, Jürgen
sl-0
Beyerer, Jürgen  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
DOI
10.48550/arXiv.2309.17257
Language
English
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Keyword(s)
  • action anticipation

  • activities of daily living

  • video understanding

  • deep learning

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024