• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Toward a continuum description of lubrication in highly pressurized nanometer-wide constrictions: The importance of accurate slip laws
 
  • Details
  • Full
Options
2023
Journal Article
Title

Toward a continuum description of lubrication in highly pressurized nanometer-wide constrictions: The importance of accurate slip laws

Abstract
The Reynolds Lubrication Equation (RLE) is widely employed to design sliding contacts in mechanical machinery. While providing an excellent description of the hydrodynamic lubrication regime, friction in boundary lubrication regions is usually considered by empirical laws, since continuum theories are expected to fail for lubricant film heights ℎ0 ≪ 10 nm, especially in highly loaded tribosystems with normal pressures 𝑝𝑛 ≫ 0.1 GPa. Here, the performance of RLEs is validated by molecular dynamics sliding simulations of pressurized (with 𝑝𝑛 = 0.2 - 1 GPa) hexadecane in a gold converging-diverging channel with minimum gap heights ℎ0 = 1.4 - 9.7 nm. For 𝑝𝑛 ≤ 0.4 GPa and ℎ0 ≥ 5 nm, agreement with the RLE only requires accurate constitutive laws for pressure-dependent density and viscosity. An additional non-linear wall slip law relating wall slip velocities to local shear stresses extends the RLE’s validity range to even the most severe loading condition 𝑝𝑛 = 1 GPa and ℎ0 = 1.4 nm. Our results demonstrate an innovative route for non-empirical predictive continuum modeling of highly loaded tribological contacts under boundary lubrication conditions.
Author(s)
Codrignani, Andrea Roberto
Fraunhofer-Institut für Werkstoffmechanik IWM  
Peeters, Stefan
Fraunhofer-Institut für Werkstoffmechanik IWM  
Holey, Hannes
Fraunhofer-Institut für Werkstoffmechanik IWM  
Stief, Franziska
Fraunhofer-Institut für Werkstoffmechanik IWM  
Savio, Daniele
Fraunhofer-Institut für Werkstoffmechanik IWM  
Pastewka, Lars
University of Freiburg, Department of Microsystems Engineering
Moras, Gianpietro  
Fraunhofer-Institut für Werkstoffmechanik IWM  
Falk, Kerstin
Fraunhofer-Institut für Werkstoffmechanik IWM  
Moseler, Michael  
Fraunhofer-Institut für Werkstoffmechanik IWM  
Journal
Science advances  
Project(s)
Effizientes Kühlen, Schmieren und Transportieren – Gekoppelte 1089 mechanische und fluid-dynamische Simulationsmethoden zur Realisierung effizienter 1090 Produktionsprozesse
FOR 5099: Reduktion der Komplexität von Nichtgleichgewichtssystemen  
Funder
Deutsche Forschungsgemeinschaft -DFG-, Bonn  
Deutsche Forschungsgemeinschaft -DFG-, Bonn  
Open Access
DOI
10.1126/sciadv.adi2649
Language
English
Fraunhofer-Institut für Werkstoffmechanik IWM  
Keyword(s)
  • slip laws

  • lubrication

  • Reynolds lubrication equation

  • RLE

  • molecular dynamics simulation

  • boundary lubrication

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024