• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Detecting vibrations in digital holographic multiwavelength measurements using deep learning
 
  • Details
  • Full
Options
2024
Journal Article
Title

Detecting vibrations in digital holographic multiwavelength measurements using deep learning

Abstract
Digital holographic multiwavelength sensor systems integrated in the production line on multi-axis systems such as robots or machine tools are exposed to unknown, complex vibrations that affect the measurement quality. To detect vibrations during the early steps of hologram reconstruction, we propose a deep learning approach using a deep neural network trained to predict the standard deviation of the hologram phase. The neural network achieves 96.0% accuracy when confronted with training-like data while it achieves 97.3% accuracy when tested with data simulating a typical production environment. It performs similar to or even better than comparable classical machine learning algorithms. A single prediction of the neural network takes 35 µs on the GPU.
Author(s)
Störk, Tobias  
Fraunhofer-Institut für Physikalische Messtechnik IPM  
Seyler, Tobias  
Fraunhofer-Institut für Physikalische Messtechnik IPM  
Fratz, Markus  
Fraunhofer-Institut für Physikalische Messtechnik IPM  
Bertz, Alexander  
Fraunhofer-Institut für Physikalische Messtechnik IPM  
Hensel, Stefan
Hochschule Offenburg  
Carl, Daniel  
Fraunhofer-Institut für Physikalische Messtechnik IPM  
Journal
Applied optics  
DOI
10.1364/AO.507303
Language
English
Fraunhofer-Institut für Physikalische Messtechnik IPM  
Keyword(s)
  • Digital holography

  • Multiwavelength sensor system

  • Production line

  • Vibration

  • Deep learning

  • Neural network

  • Machine learning

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024