• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Hardware Accelerators for a Convolutional Neural Network in Condition Monitoring of CNC Machines
 
  • Details
  • Full
Options
November 28, 2023
Conference Paper
Title

Hardware Accelerators for a Convolutional Neural Network in Condition Monitoring of CNC Machines

Abstract
Wind turbines are a vital component as a renewable source of power in the global energy infrastructure. However, the occurrence of bearing defects significantly contributes to wind turbine downtime, which often arise due to the utilization of worn-out tools in computerized numerical control (CNC) milling machines during the fabrication process. To accurately detect tool's level of wear, an analysis of vibration data is performed using a convolutional neural network (CNN) with Fourier transformation-based preprocessing. Within this study, an efficiently implementable CNN is developed and trained, with a focus on hardware implementation. Enhancing the inference speed compared to a software-based execution, a hardware realization of the CNN is explored using high-level synthesis (HLS). The resulting accelerator is integrated as a coprocessor with a RISC-V-based microcontroller within a field-programmable gate array (FPGA). The results obtained are promising, with the CNN exhibiting a root mean square error (RMSE) of 4.27 μm, indicating a suitable level of accuracy. The integrated accelerators significantly reduce inference runtime by over 99 %, while utilizing just 57.4 % of the available lookup tables (LUT) on the selected FPGA. This advancement facilitates the ongoing analysis of vibration data during the machine's operation.
Author(s)
Hoyer, Ingo
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
Berg, Oscar Artur Bernd
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
Krupp, Lukas  
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
Utz, Alexander  
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
Wiede, Christian  
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
Seidl, Karsten  
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
Mainwork
IEEE SENSORS 2023. Conference Proceedings  
Project(s)
Mikroelektronik-basierte universelle Sensor-Schnittstelle mit Künstlicher Intelligenz für Industrie 4.0  
Funder
Bundesministerium für Bildung und Forschung -BMBF-  
Conference
Sensors Conference 2023  
DOI
10.1109/SENSORS56945.2023.10324987
Language
English
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. ZV  
Keyword(s)
  • FPGA (field-programmable gate array)

  • HLS (high-level synthesis)

  • predictive maintenance

  • RISC-V

  • accelerators

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024