• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Dimension Reduction of Combined Image and Elevation Remote Sensing Data Using UMAP, Autoencoders, and Variational Autoencoders: Investigation on Shaded Regions
 
  • Details
  • Full
Options
2023
Conference Paper
Title

Dimension Reduction of Combined Image and Elevation Remote Sensing Data Using UMAP, Autoencoders, and Variational Autoencoders: Investigation on Shaded Regions

Abstract
Dimension reduction is a commonplace tool to visualize multi-dimensional data and reparametrize the features to have uniform, metric scales. With a concept of training a Machine Learning method with scarce training data in mind, we wish to investigate to what extent several well-known dimension reducers are suitable to separate very challenging remote sensing data, in particular, in shadow regions. The Potsdam data includes not only plenty of these regions, but also several seldom classes, such as vehicles or clutter. Hence, optical and elevation data as well as some additional features will be used as input for dimension reduction algorithms.
Author(s)
Bulatov, Dimitri  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Böge, Melanie  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Debroize, Denis
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Häufel, Gisela  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Qiu, Kevin
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Mainwork
IGARSS 2023, IEEE International Geoscience and Remote Sensing Symposium. Proceedings  
Conference
International Geoscience and Remote Sensing Symposium 2023  
DOI
10.1109/igarss52108.2023.10283014
Language
English
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024